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Spin-up from rest of a separating fluid-particle mixture is studied. A cylindrical 
container, filled with a stationary mixture of initially uniform particle volume 
fraction, is instantaneously set into rapid rotation. The viscous forces on the walls 
introduce a secondary Ekman-layer circulation which causes the fluid motion to 
gradually approach a state of solid-body rotation. While the mixture acquires 
angular momentum, separation starts under the action of the local centrifugal 
effects : the dispersed particles - assumed here to be lighter than the fluid - tend to 
concentrate around the centre, leaving behind a peculiarly shaped domain of pure 
fluid. This process is simulated by a finite difference version of the ‘mixture model’ 
equations. The numerical results are in good agreement with previous asymptotical 
predictions but also illuminate some aspects of the flow field that have been covered 
by the analytical approach. 

1. Introduction 
Spin-up from rest concerns the transient motion of an initially stationary fluid 

which is subsequently exposed to the action of a spinning solid boundary and 
eventually acquires a steady state of prevailing angular velocity ; in idealized 
circumstances, all the solid boundaries in contact with the fluid rotate a t  the same 
angular velocity sZ* and the final velocity of the fluid is that of ‘solid-body rotation’, 
a* x r*.  The transient velocity field is usually governed by a secondary convective 
motion sustained by quasi-steady thin viscous layers and practically completed on 
a very special ‘spin-up timescale’, which is roughly the geometric mean between the 
period of revolution and the conventional viscous diffusion time interval. 

Spin-up from rest is evidently an intrinsic stage of centrifugal processing of 
suspensions. The fact that considerable separation may take place before the 
conventional a* x (a* x r*)  field is established in the mixture provides the already 
fascinating spin-up process with additional physical features and formulation 
challenges. The investigation of this problem therefore serves several purposes : 
gaining physical insight, assessing the ability of the averaged continuum formulation 
to treat complicated non-intuitive flow fields, testing numerical solvers and providing 
the background for a thorough comparison with experiments. 

The present paper uses a numerical finite-difference solution of the ‘mixture 
model ’ to throw additional light on the spin-up from rest and separation process of 
a suspension of light particles in a cylindrical container. 
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FIGIJRE 1. Geometry and schematic motion of single-phase spin-up. 

The spin-up from rest in a cylindrical container, instantaneously set into rapid 
rotation sZ* around its axis of symmetry z is a fundamental problem. The flow field 
of a homogeneous (single-phase) fluid has been studied analytically by Wedemeyer 
(1964), Venezian (1970) and others. A corresponding numerical simulation, including 
comparison with the above-mentioned analytical results and experiments, has been 
presented by Hyun et ul. (1983). The main features are as follows, see figure 1 : an 
inwardly moving cylindrical ‘ spin-up front ’ separates between the non-rotating 
inner core I and the partly spun-up region I11 ; the quasi-steady very thin Ekman 
layers on the top and bottom caps, referred to as region 11, continuously extract fluid 
from sector I and feed it into domain I11 ; the process is effectively completed when 
all the non-rotating fluid has been flushed into region 111, and the typical spin-up 
timescale is T,*, = [ ( E ~ / H )  Q * I - ~ .  

Here E = v$/S*rE is the Ekman number, usually a very small parameter; 
H = H*/r,* is the aspect ratio - or dimensionless height - of the container; v$ is the 
kinematic viscosity of the fluid ; S*, r,* and H* are the angular velocity, outer radius 
and height of the container, respectively (the asterisk designates dimensional 
variables). 

The flow field of a non-colloidal monodispersed suspension (two-phase) fluid has 
been investigated by Ungarish (1990, 1991). The dispersed particles (or droplets) of 
radius u* and density p g  are initially well mixed in the embedding fluid whose 
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density is pz, so the initial volume fraction (or concentration) is ~ ( 0 )  throughout 
the container. The additional basic parameters are : the density difference, 
01 = (& -p$) /p$ ; the (modified) particle Taylor number p = ga*%2*/v," ; and the 
initial volume fraction s(0) .  From the physical standpoint, a new effect is introduced, 
namely, the separation of the suspension due to centrifugal buoyancy, associated 
with the timescale 7zCp = (lalPsZ*)-l. The ratio h = 7,*ep/7,*, is bound to play a 
significant role in the combination of spin-up and separation. 

The governing equations of motion for the averaged variables, which are usually 
of concern in flow of suspensions, can be formulated as the 'mixture model' or as the 
'two-fluid model'. The former can be regarded as an extension of the more familiar 
single-phase case (global continuity and momentum balances) supplemented by one 
equation for the volume fraction of the dispersed component, B .  The latter model is 
more sophisticated, containing continuity and momentum balances for both the 
'continuous' and 'dispersed ' components ('phases '), with interaction terms. The 
asymptotic approach to the problem of spin-up from rest, which will be briefly 
reviewed in $3, is based on the mixture model equations. Qualitative support to the 
analysis was given by a numerical solution of the two-fluid formulation for the 
heavier suspended particles case, OL > 0, mentioned by Ungarish (1990). Obviously, 
a quantitative comparison could become awkward and inconclusive because in such 
complex flow fields a significant -- but unknown - portion of the discrepancies can he 
attributed to intrinsic differences between the models. 

The present work attempts to  extend the previous results in several respects. 
Numerical solutions for the flow field with lighter suspended particles, a < 0, are 
obtained and discussed. This configuration is particularly challenging because of the 
moving curved interface (kinematic shock) between the central mixture bulk and the 
peripheral pure fluid region, but its numerical corroboration was not available. The 
numerical scheme is applied to the mixture model equations, with two purposes in 
mind : (a) to provide unequivocal results for comparison with the approximate theory 
(based on the same equations) ; ( b )  to verify that the numerical solution of this model 
for complicated flow problems can be achieved by non-sophisticated extensions of 
single-phase schemes within moderate programming efforts. I n  general, the 
favourable comparison, and the interpretation of the slight discrepancies, between 
the new numerical and previous analytical data yield useful information on and 
insight into the flow concerned and on the computational approach. 

2. Formulation 
The fundamental problem of spin-up in a straight circular cylinder is considered. 

The height of the cylinder is H*,  itls radius r:, see figure 1.  (Asterisks are used 
throughout to denote dimensional quantities.) At time t* = 0, the cylinder is 
completely filled with a mixture of fluid and particles of homogeneous volume 
fraction s(0). Initially the mixture is stationary. The container is, a t  t* = 0, brought 
impulsively to a constant angular velocity sZ* around its axis of symmetry. The 
mixture will gradually approach a state of solid-body rotation and separation will be 
induced by the centrifugal force, as soon as the mixture has acquired any appreciable 
azimuthal velocity. Here the detailed treatment will be devoted to particles that are 
lighter than the fluid, which consequently will settle inward, but the formulation is 
for the general case. 

I n  formulating the equations that govern this process, we shall employ variables 
that are made non-dimensional by using the following scales: outer radius r,* for 
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length, l/Q* for time, r,* 52" for velocity, pg for density, and pg(Q*r,*)2 for pressure. 
The subscripts C and D denote the continuous and the dispersed (particles) phases, 
respectively. 

The four basic non-dimensional numbers t h a t  govern the process are 

Here E is the Ekman number, which indicates the magnitude of viscous force 
compared to Coriolis force in the main flow region; a denotes the relative density 
difference; p is the Taylor number which represents the ratio of Coriolis to viscous 
drag on a dispersed particle; II is the non-dimensional height, i.e. the aspect ratio, 
of the container. In the cases of interest here, E and /3 are small, meaning that the bulk 
flow is dominated by rotational effects, while the flow around a dispersed particle is 
dominated by viscous terms. 

The momentum equation for the fluid-particle mixture is formulated in the 
standard way (Ishii 1975). Using an inertial frame of reference, and the present non- 
dimensional variables, it is 

l+Ct 
= - V p +  E V .  (,/A(€) [ V V +  ( V U ) ~  - $ I V *  v ] )  - V * S ( ~  - 6 )  - 1 + a c  vR v R .  

(2) 

Both particles and fluid are assumed incompressible, so total mass conservation 
requires that 

The conservation of suspended particles is described by 
V - j  = 0. (3) 

as 
-+V.(su , )  at = 0. (4) 

In  these equations E denotes the volume fraction of particles at  a given point, u and 
j are the averaged mass velocity and the volume velocity (flux) respectively. Let vD 
and vc denote the averaged velocities of particles and fluid, respectively, and uR is the 
relative velocity between the phases. These satisfy the following kinematic 
relationships : 

(5 )  
(1 +a) EUT) + (1  -€) vc 

1 +a€ 
U =  , j = e v , + ( l - c ) v c ,  

1 -€) 
u,, = j + ( l - e ) v R ,  j =  v - m (  

1 +ole uR* 

It is postulated that the relative motion between the phases is governed by a local 
balance between centrifugal buoyancy and Stokesian drag which yields 

UR, = v,-v, = +--( 1-€ av  ) p(e) t+v.Vv . (7) 

The function p(e) correlates the effective viscosity with that of the pure embedding 
fluid and the volume fraction (Ishii & Zuber 1979) : 
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eM is the maximum volume fraction in t h e  sediment, which is taken to  be 0.62. Kote 
that uR+O as e-+eM. 

The initial conditions describe the mixture a t  rest with a given homogeneous 
volume fract' 2 ion: 

u = O ;  e =  ~ ( 0 )  at  t = 0. (9) 

Boundary conditions are prescribed as follows: on the wall the velocity of the 
mixture equals with that of the container, and the normal flux of particles vanishes, 

u = 3 x r ;  n-(mD) = 0 at container walls. (10) 

Here 3 is the unit vector parallel to  the axis of rotation, and n is the normal to the 
container wall. I n  the present problem euE on the walls will be zero, hence the 
foregoing conditions also imply n - j  = 0 on the boundary by virtue of (6). It is 
emphasized that in the equations of motion and boundary conditions no explicit 
distinction is made between regions of pure fluid ( e  = 0), sediment (e+eM) and 
mixture. 

3. Some asymptotic results 
Analytical solutions to the foregoing formulation in the asymptotic range of small 

E,p,elal have been developed by Ungarish (1990, 1991). For completeness and 
convenient reference some pertinent results are outlined below. 

The viscous regions on the endplates x = 0, H ,  referred to as Ekman layers, become 
a dominant factor of concern. From homogeneous (single-phase) fluid studies a great 
deal of useful information about the layers is gained; in particular, it is known that 
their representative thickness is 8; = (v,*/a*);. It can be argued that this knowledge 
carries over to rotating mixtures, provided that the radius of the dispersed particle, 
a*, is much smaller than 8;. To employ this advantage the analysis is restricted to  
/3 + 1 since the definition of the Taylor number in (1) can be reformulated as 

The fundamental configuration is sketched in figure 1. It is assumed that the 
p = $(a*/&;y. 

Ekman layers are very thin, a condition expressed by 

E ;  = ( d i / r z )  = (Y,* Q*/ri) t  4 I ; 

the aspect ratio H is considered of order unity. Consequently, the flow field in the 
cylinder is envisaged as a combination of Ekman layers on z = 0, H and an interior, 
mostly inviscid 'core' in the region 0+ < x < H-,  0 < r 6 1 .  Moreover, the Ekman 
layers are considered quasi-steady because they show up and adjust during about 
one revolution of the vessel, while spin-up and separation are much slower. 

It is convenient to introduce the effective Ekman number, 

& = A 2 E  (11) 

where = (kw")~ (12) 

7 = t*/T,*, = t ( E i / H ) ;  

and the spin-up reduced time coordinate, 

(13) 

thus 7 is of order unity in the process under investigation. 
During spin-up, the angular velocity of the endplates is larger than that of the 

core, therefore a volume transport O ( 8 9 )  from the centre towards the periphery takes 
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Region I Region I11 
O < r 2 G A  A < r 2 < 1  

d GHu - r  ”(1 -A11 Ir- l/rI 
0)  0 [ l / ( l - A ) l  11-A/r21 

d -h [ 2 ~ / H - l ]  - [ A / ( l - A ) 1 [ 2 ~ / H - l ]  

TABLE I. Velocity field in the core O+ < z < H-.  A = c-2.xT 

place in the Ekman layers. To match this, the variables in the ‘core’ are of the 
following orders of magnitude: w = v / r  - 1 ; u, uR, w - €$;  vR, w R  - €$. Under the 
assumption that [a1 s < O(b;), then to  leading order in bi, the following conclusions 
can be drawn. 

(i) In  the ‘core’ region the pressure p ,  angular velocity w and radial velocities u, 
uR are x-independent, i.e. functions of r and r only. The axial velocity varies linearly 
with z .  

(ii) The spin-up is decoupled from separation, i.e. the velocity field is governed by 
the shear interactions on the boundaries (via the Ekman layers). The migration of 
the heavier component of the mixture to the periphery has negligible influence on the 
momentum balances. 

Hence, to  leading order, the velocity field is essentially provided by Wedemeyer’s 
(1964) single-phase approximation : the spin-up ‘front ’ r = ePAT divides the non- 
rotating region I and the partially rotating region 111, see figure 1, with the 
appropriate velocities given in table 1. 

I n  this mixture velocity field, the relative velocity (7) is, again to leading order, 

and the conservation of the dispersed phase (4) takes the form 

(15) 

where @(€) = s(l-s)2/p(s). (16) 

Since w ,  (&-&u) and (8-h) are explicitly given in table 1, (15) can be readily 
solved by the methods of characteristics. 

In the non-rotating region T the solution is simply e = s(O), i.e. no separation takes 
place. Table 1 shows that fluid from domain I is absorbed into the Ekman layers (at 
z = O + ,  H-)  and then effluxed into region 111. Thus the important conjecture is that 
the volume fraction in the Ekman layers during spin-up is s(O), whence the boundary 
conditions for (16) are 

e(x  = 0+) = t.(z = H-)  = ~ ( 0 )  for e-AT < r < 1, r > 0. (17)  

The behaviour of e during spin-up is strongly governed by the parameter A, the 
ratio of (developed) separation to spin-up timescales. If h < 1 a considerable amount 
of separation takes place while rotation is established. For h $ 1 ,  when spin-up is 
essentially completed the deviation from the initial s(0) is still very small. Another 
critical parameter is the sign of a, as indicated in figures 2 and 3. 
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-Sediment 
c: = e, 

L ( I 1 )  

FIGURE 2.  Qualitative volume fraction during spin-up of a mix icles. 

- Interface 

FIGURE 3. Qualitative volume fraction during spin-up of a mixture of light particles. 

For heavier particles, 01 > 0, in the rotating-mixture domain 111, the normalized 
volume fraction [e/e(O)] decreases with time, axial distance from the endplates 
(actually, from the Ekman layers) and radial distance from the spin-up front 
T = e-A'. The separated particles are expected to form a sediment on the outer wall, 
r = 1, of the container. 

For lighter particles, a < 0, in the rotating-mixture domain 111, the normalized 
volume fraction [e/e(O)] increases with time, axial distance from the endplates 
(actually, from the Ekman layers) and radial distance from the front T = e-A7. The 
particles migrate to the centre, leaving a region of pure fluid adjacent to the outer 
wall. The interface between the pure fluid and mixture has a peculiar shape, see figure 
3, which is assumed to be EL kinematic shock of zero thickness, coinciding with the 
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locus (vP, zp) of the particles effluxed by the Ekman layers a t  the rims r = 1 ,  z = 0+, 
H - .  Consider such a particle effluxed at a t  z = O + ;  its axial position a t  time 
T~ ( > T,,J i8 

and the corresponding radial coordinate is obtained by integrating 

from rinit to rl ,  subject to  xp = 1 at T = rinit, where xp = r i ,  A = e-2AT. 
In general, the integration of (19) is coupled to the solution of (16) by the presence 

of s; for very small e the ‘dilute ’ approximation @ ( s ) / e  = 1 simplifies the calculations. 
It is worth emphasizing that in the separation of a light-particle mixture starting from 
solid-body rotation the interface is expected to be cylindrical (Greenspan 1983), thus 
the shape of the interface becomes a stringent test of the relevance of the spin-up 
effects on separation. 

These briefly mentioned asymptotic solutions have been used as guidelines and 
reference results for the numerical calculations. The latter also attempt to throw 
some light on uncertainties and difficulties that  appear in the former approach. As 
opposed to the single-phase flow, little is presently known about the two-phase 
Ekman layers. Ungarish & Greenspan (1983) and Resnick (1991) studied the viscous 
flow induced hy a rotating disk in a quiescent mixture, which is a good approximation 
to the shear flow on the endplates beneath the non-rotating core (region I). According 
to these investigations, the velocity field in the Ekman (here, rather von KarmAn) 
layer is closely reproduced by the single-phase solution which accounts for the 
effective viscosity, and the volume fraction is that  of the original mixture. However, 
in a sublayer of thickness ,@EB near the disk E displayed a non-regular behaviour. The 
present numerical solutions did not encounter any difficulties that can be attributed 
to such a sublayer, and, in general, confirm the speculation that e = e(0) in the 
Ekman layers. 

Another problematic issue in the foregoing approximate solutions is the behaviour 
of e and of the shock at the midplane x = :I?. The pertinent trajectories start at the 
‘ corner ’ r = 1 , ~  = 0, z = 0 (or H )  where the ‘ core ’ apparently has a non-physical 
behaviour. For this reason the theoretical approximations have been calculated and 
displayed only up to an interval of 0.05H from the midplane. Again, the numerical 
solution does not display any special features on and around the plane z = $H. 

4. Numerical approach 
The numerical computations are carried out in cylindrical coordinates in a rotating 

frame of Areference. The velocity u used above is related to the velocity 
u = ui+  vB+ wz in the rotating frame by 8 = u + 2 x r .  Cylindrical symmetry is 
assumed, so the unknowns u, v, w , p ,  e are computed as functions of r ,  z ,  t .  Given all 
flow-field variables at time level n, the momentum equation ( 2 )  and continuity 
equation (3) are first solved for velocity and pressure a t  time level n+ 1 using the 
volume fraction at time level n. The volume fraction is then advanced using the new 
velocity field. 

As mentioned above, the original system (2)-(8) has been slightly simplified before 
the application of the numerical treatment. This simplification saves programming 
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r = O  r =  1 

FIGURE 4. Grid cell used in the numerical computations. 

and computational efforts but is not an essential part of the method. In the cases that 
will be studied here the parameter p and the product at: are small. In  order to 
facilitate the numerical treatment described below, two small terms have been 
neglected in the equations above. Firstly, since (7)  implies that vR = O(aP), the last 
term on the right-hand side of the momentum equation (2) is seen to be of order 
a2,E12e. Secondly, when using the relation betweenj and v in (6) to replace j by u in the 
continuity equation (3), the resulting equation expressed in u is V. v = O(a2pt:). The 
right-hand side of this equation, as well as the term in the momentum equation 
mentioned above, are both small compared to retained terms and are neglected in the 
numerical treatment. Also, in (7),  the acceleration on the right-hand side has been 
approximated by r d t ,  just as in the asymptotic theory in $3. 

The numerical solution of the momentum and continuity equations follows the 
scheme presented by van Kan (1986). The spatial discretizations are done on a 
staggered grid of the standard type, see figure 4. The radial and axial velocities u, 
w are defined on cell boundaries, while azimuthal velocity w, pressure p and volume 
fraction E are defined a t  cell centres. In  the momentum equation, the convective 
term is discretized with an upwind formula used by Davis & Moore (1982). Second- 
order-accurate finite-difference discretizations are used for the remaining terms. In  
the present context the basic method for time stepping from n(dt) to (n + 1) (dt) may 
be written as 

1 ( 1 + Pa) (T + $V(U". u".) + (V x 24%) x U n  + 22" x a 5-U" 

= -0~" + E V .  (,u(E") [Va+ (V12)~-$1V-i i l )  -E'& x (2" x Y),  (20) 

V(pn+l-pn)  = v*a,  
V . [ L '  1 +E"a 2 1 

Expression (20) is an equation for a, which is solved by conjugate gradient iterations 
on the three different velocity components. Using this a, the right-hand side of (21) 
may be computed, and the equation can be solved for the pressure increment from 
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time level n t o  n + 1. This is also done by the conjugate gradient method. Finally the 
velocity field a t  the new time level is obtained from (22). Note that the original 
momentum equation is obtained by using (22) to replace ii by un+l in the first term 
on the right-hand side of (22) ; ii then still remains in the Coriolis and viscous terms. 
It is proved by van Kan (1986), for non-rotating incompressible flow, that ii z u”+l 
(or more precisely 6 = un+’+O(dt2)). Then the appearance of P in the viscous and 
Coriolis terms means that these are treated implicitly, which is beneficial for the 
stability of the scheme. The theoretical proof is only for non-rotating flows, but we 
have tested the time-dependent accuracy for the rotating case with satisfactory 
results. The continuity equation is always satisfied by the new velocity field. This is 
seen by taking the divergence of (22) and noting that the divergence of the right- 
hand side is identically zero in virtue of (21). 

After the new velocity field has been obtained, the new volume fraction field, en+1, 
is calculated via the solution of (4). This is performed by the classical explicit 
MacCormack scheme, see Fletcher (1988). This method is quite accurate for 
hyperbolic problems, away from shocks where the dependent variable changes 
abruptly from one value to another. In the present problem such difficult regions are 
indeed present, namely the moving kinematic shock across which e is expected to 
jump from 0 (in the pure fluid) to a value larger than s(0) (in the mixture). At such 
locations, this scheme will give large non-physical oscillations. In  order to remove 
these wiggles, and still have a sharp transition zone, an explicit artificial diffusive 
term has been added to the right-hand side of (4): 

(23) 
ae 
at 
-+V*(SU,) = V . F .  

Here F = (F ,  H )  is the artificial diffusive flux. It is small whenever e varies smoothly. 
The radial component of F a t  the outer boundary of cell i , j  is 

where 

Here dr is the radial mesh spacing, K is a numerical parameter which is 0(1), 
typically a good choice is 0.3-0.7. The factor in square brackets, which may be 
regarded as the artificial diffusivity, consists of two terms which are weighted by 7. 
At low volume fractions the first dominates and at volume fractions near ey the 
second dominates. The first term involves the function 0‘ which in kinematic wave 
theory measures the velocity of wave propagation. It has been chosen in this manner 
to give a diffusivity that is proportional to the change in velocity of propagation on 
characteristics between mesh points. The second term in (24) reflects the absolute 
value of the gradient of 6, so that this contribution to the artificial diffusivity is small 
when e varies smoothly. It was necessary to include this second term since it was 
found that the first gives too low diffusivities in regions with almost densely packed 
sediment, say in a range of 0.5 < E < eM. A similar formula is used for the axial 
component of F. 

The present scheme is, evidently, of the ‘shock capturing’ (or ‘smearing’) type: 
the ‘shock’ appears in the global solution as a sharp but continuous transition zone. 
The alternative ‘shock fitting ’ method treats the  shock as a real discontinuity, using 
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explicitly the equation that specifies its motion ; the solution is carried out separately 
in sub-regions demarcated by the shock, and matched by ‘jump’ conditions. The 
latter method is expected t o  yield more accurate solutions, but its formulation, 
discretization, programming and computation require considerably larger invest- 
ments than the former. Although some research on the implementation of ‘shock 
fitting’ schemes to multidimensional flow of suspensions is of interest, the ‘shock 
capturing’ method seems preferable, just as in the more mature branch of 
computational compressible aerodynamics. Moreover, the present investigation 
indicates that finite-difference solvers for single-phase flows can be extended to 
tackle suspensions via the incorporation of some new terms in the existing balances 
and the addition of (23). With a ‘shock fitting’ approach the upgrading of a single- 
phase scheme to a suspension flow solver is not so straightforward and must rely on 
a deeper understanding of the expected flow field and ‘jump ’ conditions between 
pure fluid, mixture and sediment domains. 

The stability of the total scheme is governed by the CFL criterion since convective 
terms have been treated by an explicit upstream difference formula (Davis & Moore 
1982), and Coriolis and viscous terms are implicit. In  practice this means that the 
time step dt should satisfy dt < 0.3/max (uldr, wldz ) .  Note that this is the stability 
requirement that is obtained in a similar treatment of single-phase flow. Thus, 
existing single-phase codes may be practically extended to mixture flow by adding 
the equation for the volume fraction. I n  these respects the numerical solution of the 
‘ mixture ’ model is superior to the ‘ two-fluid ’ model whose discretization and use for 
a similar geometry was presented by Ungarish (1988, 1990), namely : (a )  the stability 
of the latter is also restricted by the drag terms which, in the present scaling, yields 
dt < /3; (b)  the two-fluid formulation cannot be treated as an extension of single- 
phase flow. 

Meshes with at  least 50 axial points and 60-120 radial points were used. As soon 
as the Ekman layers are resolved, the essential effect of increasing the resolution is 
to sharpen numerical shocks. Outside the shock regions, the solution did not change 
when the radial resolution was increased from 60 to 120 points. 

This code has been also used for other rotating sedimentation problems such as 
spin-up from rest of a mixture of heavy particles, slow sedimentation in a mixture 
that rotates rigidly and sedimentation in an axial channel with axial throughflow. 

The code was run on an Alliant FX2800 computer with 16 processors, which has 
a peak performance of 40 MFlops/processor. No great effort was made to parallelize 
the code, and it was mostly run on a single processor. A typical execution time 
for the simulation of 6.28 non-dimensional time units, i.e. one revolution of the 
container, on a 60 x 50 grid was 300 s CPU. 

5. Results 
5.1. TwoJlowJields with E = 10-4,h = 1, different s(0) 

The two flow fields considered here have in common the following parameters : aspect 
ratio H = 0.5, Ekman number E = 
reduced density difference CL = -0.5. The initial volume fraction, s(O), is 10% in the 
first case and only 1% in the second. The corresponding enhancement of shear 
effects, represented by 4 of (12), are 1.15 and 1.01. 

I n  both cases the ratio of separation to spin-up timescales, h = Ei/lal PH, equals 1 
and the solution was carried out up to T = 2.5 (i.e. t = 125, see (13), which 
corresponds to about 20 revolutions of the container). 

particle Taylor number /3 = 4 x 
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FIGURE 5 .  Contours of const,ant, o for e(0)  = 0.1, various 7. The lcvels are 0.1,. . . (0.1). 
The dotted line shows the asymptotical spin-up ‘front’. 

Owing to symmetry about the midplane only the domain 

0 d z /H d 0.5 (0 6 x d 0.25) 

is detailed. The Ekman (or von Karman) layer on the plate is expected to occupy the 
subregion z /H < 3Ei /H = 0.06, about Q of the axial extent of the flow field. The 
number of grid points used in the numerical simulation was 120 x 50 in the radial and 
axial directions, respectively. Hence about six axial (non-stretched) mesh intervals 
are encompassed by the Ekman layer, so that a good resolution of this shear region 
is anticipated. 

Figures 5-7 refer to the case e ( 0 )  = 0.1. Figure 5 shows the angular velocity of the 
mixture at T = 0.5, 1.0, 1.5. The theoretical predictions are essentially confirmed. A 
shear layer appears on the plate. At  T = 0.5 a non-rotating region is seen inside 
r z 0.5, in plausible agreement with the spin-up front which separates the rotating and 
non-rotating regions 111 and I in the approximate solution. The spin-up front is 
‘smeared’ by viscous effects, a behaviour known from the single-phase analysis 
(Venezian 1970 ; Hyun d al. 1983) which, however, has not been incorporated in the 
asymptotic analysis discussed in $3. At T = 1 the non-rotating core has almost 
disappeared, and the mixture is approaching a state of solid-body rotation. At 
7 = 1.5, spin-up is fairly complete : w has reached at least 90 YO of its final value for 
about 90% of the fluid contained in the cylinder. The calculated w displays a 
dependency on the axial coordinate ; this interesting discrepancy with the asymptotic 
results is caused by the presence of the dispersed phase and will be discussed later. 

Figure 6 shows contours of constant volume fraction at  7 = 0.5, 1.0, 1.5, 2.0, 2.5. 
Since a is negative, particles are lighter than the fluid and settle towards the centre. 
The complicated field of 6, varying with time, radius and axial distance from the 
plate is evident. As predicted by the analytical solution, a region of clear fluid 
develops near the outer wall. Adjacent to the pure fluid domain there is a region of 
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7 = 0.5 I 

+ r  

FIGURE 6. Contours of constant E / E ( ~ )  for ~ ( 0 )  = 0.1, various 7. The levels are 0.25, 0.50, 0.75, 0.95, 
1.05, 1.25,. . . (0.25). Also shown: the asymptotical spin-up ‘front’ (dotted line) and kinematic 
shock (heavy dashed line). 

increased particle volume fraction, E / E ( ~ )  > 1 .  The transition zone is sharp : typically, 
E / E ( ~ )  changes by a factor of 10 over a dimensionless distance of 0.05. The 
E / B ( O )  > 1 region extends inward, a little beyond the position of the theoretical spin- 
up front. I n  the region occupied by the non-rotating core there is no centrifugal force, 
consequently no separation has taken place, and the volume fraction is unchanged. 
At r = 1.0, when the non-rotating core has almost vanished, the concentrated region 
extends further inward and the maximum concentration has increased. The interface 
separating the clear fluid from the mixture has travelled further inward. At r = 1.5, 
the concentrated region extends all the way to the centre. The interface is becoming 
more cylindrical and does not reach the rim. At T = 2.0 and 2.5, the fluid is 
practically in solid-body rotation, but at this time the mixture is fairly separated: 
the pure fluid region occupies more than 60% of the container. This confirms the 
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conclusion that when h is not large a considerable amount of separation occurs before 
the mixture achieves a state of solid-body rotation. For T > 2 the mixture core 
continues to shrink and the volume fraction to increase towards a state of maximum 
packing E = eM ; this is a slow process because of the strong hindering effect of the 
close-packed particles. 

Superimposed on the numerically calculated contours are the locii of the interface 
between mixture and clear fluid predicted by the asymptotic approach, as explained 
in $3.  The agreement is good from both qualitative and quantitative aspects. In the 
finite-differences computation the interface has been ‘ captured ’ via the calculation 
of s, hence it has a finite thickness of at  least three mesh intervals. The asymptotic 
approach assumes that this interface is an infinitesimally thin kinematic shock. 

The theoretical interface is (asymptotically) attached at  the rim where the 
endplate meets the cylindrical wall. The reason for this is that the radial flow in the 
Ekman layer on the endplate that is induced during spin-up carries fresh mixture of 
the initial concentration from the non-rotating core to the rim along the endplates. 
The asymptotic theory argues that the flow in the Ekman layers during spin-up is 
rapid enough to bring the mixture to the rim before any separation has occurred. 
This argument also led to the prediction that E = s(0) in this shear layer. The 
numerically computed interfaces are however seen to be attached to the endplate at 
a finite distance from the rim ; moreover, the radius of attachment moves inward 
during the process. This is because : (a) the parameter la1 /3, considered infinitesimally 
small in the analytical approximations, has the value of 0.02 in the present runs; ( b )  
the intensity of the flow in the Ekman layers decays like (1  - w ) ,  i.e. with both T and 
r ,  see table I ; owing to these factors, the tendency of the lighter particles to move 
inwards will overcome, at  some finite distance from the rim, the drifting velocity of 
the radial motion in the shear layer. More details are presented in the Appendix. 

The volume fraction in the Ekman layers, which was conjectured by the 
asymptotic theory to be E ( O ) ,  is indeed seen to be only slightly raised at  T = 0.5 and 
1.0. A t  later times E also increases in the boundary layer. The reason for this is the 
same as above, i.e. that the settling velocity becomes comparable to the radial 
boundary-layer transport as the radial flow in the Ekman layer decays. 

It was mentioned that the theoretical treatment of the interface becomes 
problematic as z /H approaches 0.5. Figure 6 indicates that this is not a serious 
deficiency since the numerical solution does not contain any dramatic behaviour near 
the midplane that has not been captured by the asymptotic theory. (On the contrary, 
it is possible that the approximate analytical solution hints at  a delicate effect that 
is beyond the resolution of the finite-difference code used here.) 

The dependency of w in the core on the axial coordinate z ,  as observed in figure 5,  
turns out to be caused by the variations of E in the axial direction. In  particular, at 
7 = 1, the curves of constant w are not parallel to the z-axis around r x 0.6 where E 

increases significantly with z .  The interpretation is as follows. The axial momentum 
equation indicates that when the Ekman number is small there is no mechanism to 
support axial variations of the pressure, consequently during the spin-up we 
anticipatep = p ( r ,  7 ) .  At the same time, the main force balance in the radial direction 
is between the radial pressure gradient, ap@, T) /ar ,  and the centrifugal term 
( 1  + sa) w2r. Hence the latter product must be independent of z ,  and since E varies with 
z, this variation has to be compensated for by a variation in w. Essentially, the effect is 
similar to the more familiar ‘thermal wind ’ result, i.e. an axial variation in the fluid’s 
density causes an opposite axial change in angular velocity; the increase of 
temperature is parallel to an increase in volume fraction here because both reduce the 
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FIGURE 8. Contours of constant w for ~ ( 0 )  = 0.01, various 7 .  The levels are 0.1,. . . (0.1). 
The dotted line shows the asymptotical sppin-up ‘front’. 

local density of the rotating fluid. This interpretation is verified in figure 7 .  This 
graph shows, at 7 = 1.0 and r = 0.595, the total non-dimensional density (1 +€a),  
angular velocity o and (1 + ecc) 6% as functions of z .  There is a clear dependence on 
z of both density and angular velocity, but the product ( 1  + ea) 0 2 r  is constant outside 
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FIQURE 9. Contours of constant E/E(O) for ~ ( 0 )  = 0.01, various T .  The levels arc 0.5, 0.95, 1.05; 
1.5-5.0 (0.5); 6.0 , .  . . (1.0). Also shows the aaymptotical apin-up ‘front’ (dotted line) and kinematic 
shock (heavy dashed line). 

the Ekman layer, as expected. The asymptotic theory did not account for this effect 
due to the assumption that EOI is a negligibly small quantity. The fact that  the ‘ jump ’ 
of e across the kinematic shock causes a ‘jump ’ in w implies that an inclined detached 
shear layer of Ekman type exists around this interface to smooth out the velocity 
discontinuity. The structure of this interface becomes therefore more complex than 
anticipated, an interesting topic for further investigation. It is noted in passing that 
w in figure 7 displays a clear maximum a t  x M 0.025 ; the theoretical linear Ekman 
layer predicts such a maximum at z = fm$i = 0.027. 

Figures 8 and 9 are similar to figures 5 and 6 but for the case with the initial volume 
fraction e(0 )  = 0.01 instead of 0.1. This means that there will be less variation of 
viscosity and settling velocity, cf. (7),  (8), and also that the variation in absolute 
density is small so that the dynamical effects that  caused w to depend on z in the 
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FIGURE 10. Profiles E / E ( ~ )  w5. r for ~ ( 0 )  = 0.1, a t  7 = 1, at (a)  z /H = 0.45, ( b )  z /H = 0.1 : 
-, asymptotic theory ; , numerical results. 
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interior are weak (in this sense, the run is closer to the range of validity of the 
asymptotic theory). 

Figure 9 shows contours of constant E/E(O). There are some noticeable differences 
compared to  the s(0) = 0.1 case in figure 6. Evidently, settling proceeds faster in the 
~ ( 0 )  = 0.01 case, the clear-fluid interface advances further in, and the relative 
increase in volume fraction in the concentrated region is larger. This is due to the 
hindering effect, which becomes less pronounced at smaller volume fraction. The 
hindering coefficient for the particle settling velocity, [ 1 - e(O)l8//,u[s(O)], equals 0.62 
for E = 0.1 and 0.96 for s = 0.01. On the other hand, the spin-up is slightly slower for 
the E = 0.01 case, which is due to the smaller effective viscosity (recall the 
appropriate values of the coefficient A). I n  fact, the velocity field is almost exactly 
the same as in single-phase spin-up. The numerical contour lines of s are again 
superimposed on the interfaces predicted by the analytical approximations. The 
agreement is good. The radial positions of the attachment of the interface to the 
Ekman layer are quite similar to those of the previous run a t  corresponding T, in 
accordance with the estimates of the Appendix. 

For a more stringent comparison, profiles of 6 versus r from the numerical 
computations were plotted together with the asymptotic predictions. Figure 10 
shows s as function of r fm the case with ~ ( 0 )  = 0.1, at T = 1 .O, a t  two  axial positions : 
near the midplane and closer to the ‘edge’ of the Ekman layer. It is seen that the 
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FIGURE 11. As figure 10 but for ~ ( 0 )  = 0.01. 

numerically computed shocks are fairly sharp, and that their location agrees 
reasonably well with the analytical predictions. The transition from non-separated to  
separating mixture is smoother in the numerical profiles, because the spin-up front 
that separates regions I and 111, figure 1,  is actually smoothed by viscosity, as 
previously mentioned. 

In figure 11 the corresponding profiles for the e(0) = 0.01 case are shown. Here it 
is seen that the finite-difference code is less successful in reproducing the shocks than 
in the ~ = 0 . 1  case. However, the jump in E / E ( O )  is now larger, which probably 
enhances the contribution of the artificial diffusivity term, (24). Moreover, at 
z/H = 0.1 the ' shock ' is very inclined, see figure 9 ; hence the sharp variation of E is in 
the axial direction rather than in the radial one, which yields an apparent wider 
'smearing' in the profile ?is. r .  

5.2. Flm.fieEd with E = 1.01 x W 5 , h  = 0.68 
The code was used to compute a configuration that has been studied in a laboratory 
test described by Ungarish (1991). The relevant parameters are : aspect ratio 
H = 2.094, Ekman number E = 1.01 x relative density difference a = -0.034, 
particle Taylor number ,8 = 0.0648 and initial particle volume fraction ~ ( 0 )  = 0.01. 
The ratio of settling time to spin-up time h was 0.68; settling is thus slightly faster 
than spin-up. This combination of parameters is closer to the asymptotical 
requirements than the previously discussed case owing to the smaller E and a. (Also, 
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FIGURE 12. Contours of constant e/e(O) for the experimental case, various 7. The levels are 0.5,0.95, 
1.05; 1.5-5.0 (0.5); 6 .0 , .  . . (1.0). Alao shown is the asymptotic kinematic shock (heavy dashed line). 

the aspect ratio is 2.094 instead of 0.5, which makes the ratio of Ekman-layer 
thickness to  height even more favourable.) On the other hand, the difficulty of 
numerical resolution increases. Here simulations were carried out up to 7 = 1.5, 
corresponding to t = 988, i.e. approximately 160 revolutions. A grid with 200 axial 
and 100 radial points was used. 

In  figure 12 volume fraction fields at 7 = 0.8, 1.2, 1.5 are shown. Again, owing to  
symmetry about the midplane only the portion 0 6 x/H < 0.5 is detailed. The 
qualitative picture is similar to that seen above: a non-rotating core with s = s(0) 
inside a region with increased volume fraction. At the outer wall there is a pure-fluid 
region. The most apparent difference here is that the interface is attached closer to 
the rim ; this is because la1 p, to which the displacement from the rim is proportional, 
see (A2)  in the Appendix, is now ten times smaller than in the previous runs. 
Superimposed on these graphs are the interface shapes that are predicted by the 
asymptotic theory. The agreement is excellent. 

Figure 13 displays photos of the experiment performed by Ungarish (1991) at the 
same values of 7 as computed for figure 12. The qualitative agreement in the shape 
of the interface is striking. Unfortunately it is not feasible to extract reliable 
quantitative information from these photos but they certainly provide good support 
for the results presented in this paper. 
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FIGURE 13. Photographs from experimental tests 

6. Concluding remarks 
The velocity and volume fraction (concentration) fields, during spin-up from rest 

of a separating suspension of light particles in fluid, were simulated by a finite- 
differences version of the (slightly simplified) mixture-averaged equations of motion. 
Artificial diffusion was incorporated to  facilitate numerical ' shock capturing ' 
treatment of the expected kinematic discontinuities. Qualitative and quantitative 
comparisons with asymptotic theory were emphasized. 

It was found that reasonable numerical solutions could be obtained for this rather 
complex flow, and that the kinematic shock representing the interface between clear 
fluid and mixture could be reproduced sharply. The resolution of this interface 
deteriorates when the volume fraction is small (in our case, 1 YO), a topic that requires 
further investigations and improvement. The simulations are quite CPU time 
consuming because the large number of points and time steps needed due to 
resolution and stability considerations. Efforts for parallelization are necessary to 
improve the performances. 

In  the cases considered it was shown that a t  1 YO initial volume fraction of particles 
(with la1 = Ipn-pcl/pc = 0.5) the velocity field is affected only very slightly by the 
presence of particles, and is very close to  that in spin-up of a single-phase fluid. 
However, at 10% volume fraction the flow field differs significantly from the single- 
phase solution. Among other things, the axial variation of volume fraction causes an 
axial variation of the azimuthal velocity in the interior, which is impossible in a 
single-phase flow. 

I n  general the agreement between the asymptotic theory and the simulations is 
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7 Eq. (A 2) figures 6, 9 

0.5 0.96 0.96 
1 .o 0.86 0.88 
1.5 0.67 0.17 
2 .o 0.45 0.60 

TABLE 2 

excellent. Although the asymptotic theory breaks down on the axial midplane, the 
simulations do not show any dramatic behaviour there and the agreement between 
the approximate results and simulation close to the midplane is still satisfactory. The 
discrepancies - which are larger for cases with Ekman numbers that are not very low, 
a t  larger times and at  higher volume fraction - can all be consistently explained by 
the deviations from the assumptions employed by the asymptotic theory. Also, the 
axial mesh interval used here was sufficiently small to reproduce the Ekman layers 
but too coarse for detecting the one-particle sublayer predicted by previous 
investigations. This did not cause any observable deficiencies in the computations. 
The good agreement between the numerical and the asymptotic solutions gives 
considerable confidence in both approaches and provides encouragement for applying 
similar methods in even more complicated situations. The hope is that experimental 
progress will follow soon. 

The research of M. U. was supported by the Fund for the Promotion of Research 
at the Technion. 

Appendix. Attachment radius estimates 
It is argued that the kinematic shock is attached to the endplate at the farthest 

radial positions where particles are carried by the Ekman layer, denoted 
subsequently as ra. In other words, ra is the radial position where, in the Ekman layer 
adjacent to  region 111, max (uD) = 0. 

According to (6) 
U D  =j.P+(l-e)u,. 

Since in this layer uR M -IaIP([ l -e(O)] /p[e(O)])r  (see (7)) and x 0 . 3 ( 1 - w ) r  
(from the theory of rotating single-phase fluids), the radius of interest, ra  will be given 
by 

UD M (0.3[1-0(r,,~)]-~01[,8[1 - E ( O ) ] ' / , U [ C ( O ) ] ) ~ ,  = 0. (A 1 )  

Substituting w ( r ,  r )  from table I and rearranging yields 

For the run of $5.1 one obtains the results shown in table 2 (the results for 
~ ( 0 )  = 0.1 and 0.01 are very close so we do not distinguish between the cases in table 2 ) .  

The approximation (A 2) apparently captures the leading mechanism that governs 
the position of attachment of the interface to  the endplate. The discrepancies are 
probably caused by numerical smearing. 
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